LESSON 3: Multiline Enviroments

Many times it happens that an equation is to long to fit on a line or, for example, there is a natural sequence of several steps in a calculation and you would like to display each step. In such a case it is good to have Multiline Enviroments. The main one that is built into $\mathrm{IAT}_{\mathrm{E}} \mathrm{Xis}$ the eqnarray environment but better ones are available if you use the amsmath package. The general syntax for eqnarray is as follows:

```
\begin{eqnarray}
f(x) & = & \ \in^2(x)\\mp@subsup{\operatorname{cos}}{}{\wedge}2(x) \\
        &=& (\\operatorname{sin}(x)\\operatorname{cos}(x))^2 \\[2ex]
        &=&\frac14\sin^2(2 x)
\end{eqnarray}
```

$$
\begin{align*}
f(x) & =\sin ^{2}(x) \cos ^{2}(x) \tag{1}\\
& =(\sin (x) \cos (x))^{2} \tag{2}\\
& =\frac{1}{2} \sin (2 x) \tag{3}
\end{align*}
$$

If, in the preamble you use ckage\{amsmath\}thenyoucanusethealignenvironmentundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\begin{align}
f(x) & = \ \sin^2(x)\\mp@subsup{\operatorname{cos}}{}{\wedge}(x) \\
        &= (\\operatorname{sin}(x)\\operatorname{cos}(x))^2 \\[2ex]
        &=\frac14\\in^2(2 x)
\end{align}
```

$$
\begin{align*}
f(x) & =\sin ^{2}(x) \cos (x) \tag{4}\\
& =(\sin (x) \cos (x))^{2} \tag{5}\\
& =\frac{1}{4} \sin ^{2}(2 x) \tag{6}
\end{align*}
$$

N.B.

1. One the last line you do not include the double backslash.
2. notice the environments automatically put in an equation number. If you don't want them the use \begin\{align*\} or \begin\{eqnarray*\} }
3. You can also use \nonumber to cancel a number on a single row.

The align environment has many variants. One is that you can set multiple alignment tabs. In this case the (\&) doubles as a mark for the alignment point and as a column separator. It goes like this

- the first \& marks the alignment point of the first column;
- the second $\&$ is a column separator;
- the third \& marks the alignment point of the second column.

If the number of columns is three then there must be $5 \& s$ in each line. The two even-numbered \& s are column separators, and the odd ones are alignment marks

$$
\begin{array}{rlrl}
f(x) & =x+y x & g(x) & =x^{2}+2 x y+y^{2} \\
& =x(1+y) & & =(x+y)^{2}
\end{array}
$$

Another variant is the aligned environment which makes a set of aligned equations into an object that is treated as a single large symbol. One application of this is to center an equation number when the object has more that one row. At this point I am also introducing the equation environment:

$$
\begin{align*}
h(x) & =\int\left(\frac{f(x)+g(x)}{1+f^{2}(x)}+\frac{1+f(x) g(x)}{\sqrt{1-\sin x}}\right) d x \tag{1}\\
& =\int \frac{1+f(x)}{1+g(x)} d x-2 \arctan (x-2)
\end{align*}
$$

N.B. Note that the equation environment is the main way to display a single equation with an equation number. Other than the equation number it is the same as using double dollar signs.
N.B. To put in a line of text between aligned rows use the \backslash intertext $\} \$$ command:

$$
f(x)=x+y z \quad g(x)=x+y+z
$$

The reader also may find the following polynomials useful:

$$
h(x)=x y+x z+y z \quad k(x)=(x+y)(x+z)(y+z)
$$

N.B. One final multiline tool is the multiline environment.

$$
\begin{aligned}
& \left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2} \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \\
& \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5}\right)^{2}
\end{aligned}
$$

Here we have

- $\backslash \backslash$ separates the lines (but there is no $\backslash \backslash$ on the last line).
- The whole formula is numbered unless it is \tag-ed or numbering is suppressed using a \{multiline*\}.
- The first line is flush left, lhe last line is flush right and the middle lines are centered.

PROBLEM: Use the eqnarray or align environments to typeset the sequence of equalities between

$$
\begin{gathered}
(a+b)^{n} \\
\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}
\end{gathered}
$$

and

$$
a^{n}+n a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-2} a^{2} b^{n-2}+n a b^{n-1}+b^{n}
$$

